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Generally two-dimensional and three-dimensional formulations of the non-linear crack problem when the crack surfaces do not 
overlap for a non-uniform anisotropic linearly elastic body are considered. The first derivative of the potential energy function 
with respect to the perturbation parameter and its representation in the form of an invariant integral over an arbitrary closed 
contour are obtained for a general form of the differentiable perturbation of a region with a cut, using the method of material 
derivatives. The sufficient conditions for the existence of an invariant energy integral are derived in general form, and examples 
of invariant integrals are constructed for different types of perturbations and a different geometry of the cut. 0 2003 Elsevier 
Science Ltd. All rights reserved. 

We consider the non-linear problem of the equilibrium of body containing a crack, when the condition 
for the crack surfaces not to overlap is satisfied. A general two-dimensional or three-dimensional model 
of a linearly elastic, inhomogeneous, anisotropic body is used. Unlike the classical linear formulation 
of the crack problem under conditions when the crack surfaces are stress-free, the non-linear problem 
is reduced to a variational inequality. The perturbations of this problem are investigated in order to 
obtain a general form of the invariant energy integrals. A classical example of invariant energy integrals 
is the Cherepanov-Rice integral, which describes the energy-release rate (equal to the rate of inflow 
of energy at the crack tip) and is used in fracture mechanics to describe the growth of the crack. The 
path independent integral was defined in [l-3] in the essentially non-linear problems of the non-linearly 
elastic and inelastic deformations of materials with cracks. Some crack problems were investigated in 
[4,5] when there was unilateral contact between the crack surfaces. A mathematical basis for the invariant 
energy integrals for linear problems was presented in [6, 71. 

The theory of singular perturbations [8,9] is usually employed when considering regions with non- 
smooth boundaries, for example, bodies with cracks. Regular perturbations, despite the non-smoothness 
of the boundary, are used when representing a region by means of smooth coordinate transformations. 
This approach extends shape-optimization methods for smooth regions [lo] to regions with non-smooth 
boundaries. The derivative of the energy in the non-linear problem was obtained for the first time in 
[ll]. Using the variational formulation of linear and non-linear crack problems [12,13], formulae were 
then obtained for the derivative of the potential energy and the corresponding invariant integrals for 
a number of cases [14,15]. 

In Section 1 we investigate the problem of the general perturbation of a region with a cut, where the 
cut geometry is not specified. The initial problem of the equilibrium of a body with a crack is formulated 
in the form of a variational inequality; the perturbed problem in a region with a crack is constructed, 
and the conditions for the mutual uniqueness of its representation in the initial region are formulated; 
the asymptotic form of the perturbed solution is derived and the material derivative of the solution is 
determined; using the material derivative the asymptotic form of the potential energy function and a 
formula for its first derivative are obtained. 

Section 2 is devoted to the use of the relations obtained in Section 1 to find the invariant integrals. 
A general form of the invariant energy integral and the sufficient conditions for its existence are obtained; 
using the general formula, examples of invariant integrals are constructed using perturbations of the 
whole cut, the edge of the cut and when the tip of the cut is perturbed, which will also hold for the 
classical linear crack problem. 
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1. THE GENERAL PERTURBATION OF A REGION WITH A CUT 

Formulation of the initial problem. Consider a bounded region Q C RN, where N = 2 or 3, with a 
Lipschitz-continuous boundary as2 and a certain part of it rD c aQ with meas r, > 0. Suppose there 
is a cut r0 inside Q like a certain (N- l)-dimensional manifold in RN, i.e. l?, is a non-closed curve when 
N = 2 or a surface when N = 3. We will denote the edge of the cut by ‘yo. 

Assumption 1. The set (Q, To, lYD) satisfies the following condition. The region Q can be divided into 
subregions fir and &, i.e. a = !& U i& with a common boundary r, i.e. a1 U Ji, = r, and in this case 
the following conditions are satisfied: (a) Oi and G, have Lipschitz-continuous boundaries an, and a&, 
(b) r0 c r, and (c) meas (aG2, n ro) > 0 for ~1 = 1,2. 

Conditions a and b define the smoothness of the region with the cut, while condition c is necessary 
in order to satisfy the Korn inequality. In particular, it follows from Assumption 1 that the cut r. is 
Lipschitz-continuous, and hence we can choose the unit vector v = (vr, . . . , vN) normal to r0 at least 
almost everywhere on the cut. We will assume that the chosen direction v corresponds to the positive 
side of the cut I$ while -v corresponds to the negative side r,. We will now define the region with the 
cut in RN as a, = n\i-, with the boundary a& = an U I$ u r, U y,. 

Everywhere henceforth, unless otherwise stated, the subscripts i,j, k and I take the values 1: . . . , IV; 
summation is carried out over repeated subscripts. 

We will introduce the Sobolev space 

H’(Q)) = (v= (u ,, . . . . v,): VIE H”(R,), ui = 0 almost everywhere on l?,} 

which contains the homogeneous Dirichlet condition (the fixing of the body) on part of the external 
boundary r,. We will require that the condition for no overlapping of the sides of the cut to be satisfied; 
this can be written in the form of the following inequality for the jump in the function on the cut [12) 

[U].VE[Ui]Vi201 [Vi] = U’lr;-~jlr, 

This condition leads to the definition of the set of permissible functions in the form 

K, = (u = (v,, . . . . I+,,) E fil( R,): [u] . v 2 0 almost everywhere on I?,) 

which is convex and closed in @r (Q,). Within the framework of the linear theory of elasticity, for the 
displacement vector 2) = (.ur, . . . , uN), we define, in a standard way, the deformation and stress tensors 

with a symmetrical and positive-definite tensor of the coefficients of elasticity {c+[}, i.e. e+[ = cjikf = 
cklij and Cijkl~kl&j a cO%jbj > 0. Here we assume that cijkl E C2(RN). 

Suppose the external load in the region f = (jr;, . . . . , . fN) is also specified by smooth functions 
x E Cb(RN). The following problem of the theory of elastic@ is considered in the region with a cut a0 
when the sides of the cut To do not overlap in the generalized formulation 

O~j(UO)Ei~(V- ~‘)dRo ~Ifi(u-u*)i~~,, VU E K, (1.1) 

By virtue of Assumption 1 and the previous constructions, a unique solution L? E K0 of variational 
inequality (1.1) exists. It is characterized by the following relations 

-aiJuQ) = fi almost everywhere in R, 

!$I . v 2 0, 10&4*)vi] = 0, o,j(uo)vjv, so (1.2) 

o~(uO)Vj-a~j(uO)VjV,Vi = 0, CJ~j(UO)VjV,([LfO]. V) = 0 on To 

The relations on the cut can be given an exact meaning in the space Hz(To) for a jump in the 
displacements and its dual space with the corresponding stresses, as was demonstrated previously in 
[12], if we additionally require the C1.l-smoothness of the cut. Moreover, it was shown in [12] that the 
solution u” of problem (1.1) possesses an additional local H2-smoothness inside the region Q0 and up 
to the sides of the cut l7; excluding the neighbourhood of the edge of the cut ‘yo. 
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Formulation of theperturbedproblem. For the small parameter E E (--&a, aa) we take the erturbation 
@ = (@I, . . . ) 3: CDN)(c)(x), which is specified by continuous functions Q E C2(-aa, EO W am) and 
Q(O) = I with identity operator I. We will fix E. Using the coordinate transformation (D(E)(X) for x E Q 
x E 3R andx E IO we obtain the perturbed region @(a)(Q) with boundary @(&)(aQ) and the perturbed 
cut I, = Q(s)(IO) respectively. We will define the perturbed region with the cut as Q, = @(~)(fi)\i=~. 
According to the existing smoothness of the function Q’, the following expansion in series with respect 
to E holds 

Q(E) = Z+i5V+o(E) in RN (1.3) 

where we have denoted the quantities a@/& when E = 0 by the vector I/ = (Vi, . . . , I(,>. It then follows 
from formula (1.3) that the Jacobian of this transformation allows of the representation 

J(E) = (&D/&](E) = 1 + &divV+ a(~) almost everywhere in RN (1.4) 

and hence is strictly positive for fairly small E. Consequently, the coordinate transformation 

specifies a one-to-one correspondence between the regions Q, and Q2,. Here the inverse transformation 
x = &(a)(y) exists, where Q-l = (a;‘, . . . , C&?) with functions @(a) E WIPm(RN) and &(s)(Q) = Q& 

Suppose meas @(s)(ID) > 0 and the following assumption holds. 

Assumption 2. For each permissible E the collection of perturbed sets (@(a)(Q), I,, a(~)@‘~)), like 
the set (Q I,,, ID), satisfies conditions a-c in Assumption 1. 

We introduce the Sobolev space 

ii’ = {u = (v,, . . . . v,): ui E H’(R,), ui = 0 ahnost everywhere on @@)(I%)] 

According to the one-to-one representation of regions (1.5), the differentiability of <D(E) and 
assumptions made, representation (1.5) also gives a one-to-one correspondence between these spaces 
#’ (a,) and%?’ (Q,). From the inclusion 2) E E?l (Q,) it follows that 2) 0 Q(E) E I?l (Q,), and conversely, 
2) E g1 (no) implies 2) 0 Q-l (a) E H1(Q2,), where (u 0 (D(E))(X) = u(@(E)(x)) and (u 0 &(a))(y) = 
u(@-‘(E)(y)). Suppose vE = (v!, . . . , v&) is the unit vector of the normal to the perturbed cut I’,. We 
define the set of permissible displacements in the region Q, 

K, = {u = (v,, . . . . v,) E ii’(&): [v] vE > 0 almost everywhere on I,] 

which will be convex and closed in H1 (Q,). In order to obtain a one-to-one correspondence between 
the sets K. and KE, it is sufficient for the following condition to be satisfied. 

Assumption 3. The transformation of d, and the geometry of the cuts IO and I, are such that for all 
permissible values of E the following condition is satisfied 

VE 0 Q(E) = v (1.6) 

Condition (1.6) will be satisfied, for example, when vE = v = const and for an arbitrary transformation 
of 4, or when vE = v, which depends only on (xi, . . . ,xN_l)andQj=xiforalli= 1, . . . . N-l. 

We will now formulate the problem of equilibrium in the perturbed region Q2, 

By virtue of Assumption 2, and from the same considerations as for problem (1.1) a unique solution 
ZL& E K, of variational inequality (1.7) exists for each permissible E. Hence, for each fixed CD a single- 
parameter family of problems (1.7) can be constructed, which depend on the region perturbation 
parameter c. 

The original problem (1.1) is a special case of problem (1.7) when E = 0. 
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The asymptotic form of the solution. We can apply coordinate transformation (1.5) to the functions 
and integrals in inequality (1.7), so as to represent it in the original region &. The use of inverse 
functional matrix Y = @@//a~)-~ gives the transformation of the derivatives a/ayi = ‘u,$I/&, and the 
transformed strain tensor 

Eij(Y; U> = l/2( Ui,kY, + ~j,kYki) 

Consequently, by Assumption 3 problem (1.7) can be rewritten in the equivalent form 

I J(E)(cijk~ o @(E))Ek[(y(E); uE ' C[)(E))Eij(y(E); U-lie ’ Q(&))dQ,> 

2 J(E)(fj 0 Q(E))(2)- UE 0 @(E))idq), 5 tiv E K, 

Hence, we have proved the following result. 

Theorem 1. For sufficiently small E the solution ZZ of the perturbed problem (1.7), represented in 
the original region R0 using transformation (1.Q is the unique solution ZL’ 0 @(E) E I& of variational 
inequality (1.8). 

Using the existing smoothness of @f, {c+), we can expand the operators in problem (1.8) in series 
in E. In fact, it follows from formulae (1.3) and (1.4) that 

Y(E) I (&D/ax)-’ (a) = I - &a V/ax + Q(E) almost everywhere in L2, 

(1 is the identity matrix). Hence, the following representation of the transformed strain tensor holds 

Eij(Y(&); v) = Eij(V) - &l$(dVlax; u) + o(&)r,(u) almost everywhere in a, (1.9 

with a certain continuous form rl. Here and henceforth we denote the residual terms in the expansions 
by r. 

The expansion of the coefficients of elasticity in the form 

cjjk. o Q)(E) = cijkr + E( VVcijkl) + O(E) almost everywhere in Q, (1.10) 

also follows from formula (1.3) and the similar formula for the load functions 

fi o (P(E) = fi + E( VVfi) + O(E) almost everywhere in R, (1.11) 

Hence, substituting expressions (1.4) and (1.9)-(1.11) into (1.8) we obtain the asymptotic expansion 
of the operator on the left-hand side of this inequality in the form 

with the form 

J(E)(Cijklo @(E))Ekl(y(E)i u)E~Cy(e); v)dsz, = 

I 

(1.12) 
= (c~~(u)E~~(z)) + &A,(V; u, u) + o(E)~*(u, u))dQ, 

A,(V; U,V) = diV(VCijkl)Ekl(U)Eij(U)- Oij(uje,cavlax; ~)-o~~(~)q~(av/a.~; U) (1.13) 

which is bilinear and symmetrical with respect to u and v, and the representation of the operator on 
the right-hand side of inequality (1.8) in the form 

/J(E)(~; 0 Q(E))v&~~ = j(fiui + &div(Vf& + o(e)r,(u))dQ, (1.14) 

with certain continuous forms of r2 and r3. 
The set I& is a cone in space I?’ (a,), and hence we choose u = 0 and II = 2(u” 0 Q(E)) as the test 

functions in inequality (1.8), which leads to the equation 

I J(E)(Cijkl' (P(E))Ekl(Y(E); UE ’ (D(E))Eij(Y(E); UE o (P(E))ds2, = 

= I J(&)(fi 0 CD(&))@” 0 @(E))idSZ~ 
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The use of expansion (1.12) and (1.14) with respect to E here gives the representation 

I Oij(UE 0 @(E))Eij( UE O @D(E))dQJ = jUi( tiE 0 (D(E))i -I- E(div( VfJ(u” 0 Q(E))i - 

-A,(V; uE 0 Q(E), uE 0 Q(E))) + o(~)r&~ 0 Q(E), uE 0 d>(~))}dQ, 
(1.15) 

with a certain continuous form of r4. Consequently, after using the Korn and Holder inequahties, Eq. 
(1.15) leads to the uniform limit 

lIUE o @(E)//R,(n,, 5 c, (1.16) 

for sufficiently small E. 
We will now take 2) = uE 0 Q(E) in (1.1) and u = u” in (1.8) and add these inequalities. Again, taking 

relations (1.12) and (1.14) into account, we derive the representation 

I (Tij(UE 0 Q(E) - UO)Eij(U” 0 @(~)-~‘)dfi,IJ(E(div(Vf~)(~’ 0 a(&)-~‘)i- 

-A,(V; uE 0 (P(E), uE 0 Q(e) - ~4’)) + o(E)r4(f4& 0 a(E), 24’ 0 Q(E) - u”) )dR, 

Similarly, using the Korn and Holder inequalities here, taking into account limit (1.16) and the 
continuity of the formAl, we obtain the estimate 

(1.17) 

In particular, inequality (1.17) denotes that 

uE 0 a(E) + u” strongly in iir(!L%,) as E + (4 (1.18) 

It follows from inequality (1.17), divided by E, that the weak limit ti(Q) E Br(51,) exists in a certain 
subsequence of E,, i.e. 

E,‘(u’” o a(&,) - u”) -_j ti(@) weakly in fi’(a,) as E, + 0 (1.19) 

This limit can be non-unique. 
According to the definition in [lo], this function ti(@) is called a weak material derivative of the 

solution, which can also be interpreted as the total derivative of the perturbed solution U’ 0 Q(E) with 
respect to the parameter E. 

We will investigate its properties. First, we will denote by C(u”) c IO the set of points on the cut, in 
which the equation [~a] . v = 0 for the solution u” of problem (1.1) is satisfied. Since, by virtue of condition 
(1.6) we have [uE 0 @(E)] * v 2 0 on Ia, on the basis of the compactness principle it follows from the 
convergence of (1.19) that [ti(@)] . v > 0 on C(U’). Second, we will use 2) = u’” 0 Q(G) as the test function 
in inequality (1.1) divided by E,, and take the limit as E, -+ 0 by virtue of the convergences of (1.18) 
and (1.19). We finally obtain 

jO,$)E,(ti(@))~Q, > jfitii(@)dS1, (1.20) 

From inequality (1.8) for the subsequence of functions uE” 0 @(E,) with test function u = U’ we have, 
by virtue of expansions (1.12) and (1.14) 

s Gij(zP 0 @(&,))Eij(UO - U En 0 @(&,))dQ, 2 /{j-i(U0- UEfl 0 @(E,))i t 

+ E,(div( Vfi) (u” - uEn 0 W,E,))~ - A,( V; uEn 0 a(&,), u” - uEn o Q(Q)) + 

+ o(En)r4(uE” 0 a(&,), u”- z.4 En o WE,)) IdQ, 

As before, we divide this inequality by E, and take the limit as E, -+ 0 on the basis of relations (1.18) 
and (1.19). This gives 

- l a i j ( u O ) E ~ j ( a ( ~ ) ) ~ ~ O  ~ - J f i l i i ( : ~ ) ~ ~ O  (1.21) 
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Inequalities (1.20) and (1.21) lead to the equality 

J oij(u”)~ij(~(~))ds2, = (1.22) 

We will now determine the closed convex set 

Z(UO) = (II= (u,, *.., II,) E ri’(CI,): [v] ’ v 20 on C(u’), 

Oij( uO)Eij(V)dn, = Ifiu,dS2,) 

which is a hyperflane in the space fir (Q,), tangent to the cone K0 at the point u’. This is not empty, 
for example, +U E Z(u”). Taking identity (1.22) and the previous discussions into account, we can prove 
the following result. 

Theorem 2. Under the conditions of Theorem 1, a weak material derivative of the solution C(Q)> E 
Z(U’) exists in the sense of the convergence of (1.19). 

We can derive one more important relation characterizing G(Q). Problem (1.1) gives the obvious 
identity 

f oii( u”)eij( u’)dQ, = J&b0 
We subtract this from equality (1.15) with E = Ed, divide the relation obtained by E, and take the limit 
as Ed -+ 0 by virtue of (1.18) and (1.19). We finally obtain 

2jbij(uo)Eij(ti(@))dR, = J (f&(Q) + div( Vfi)up - A,(V; u”, u’))dCl, 

which, taking equality (1.22) into account, gives the required result in the form of the following lemma. 

Lemma 1. The following orthogonality conditions are satisfied for the material derivative ti(@) of 
Theorem 2 

J oij(uQ)qj(ti(@))dQ, = (div( Vf ,>up - A,( V; u”, u’))dQ, (1.23) 

Note that the unique solution U E Z(u’) of the variational inequality 

(CTij(U)e9(~- U)dQ, 2 j(div(Vf,)(v- Q-- A,(V; u*, II - U))dQ,, ‘+‘u E Z(u’) 

satisfies all the relations obtained for C(Q), but in the general case it is not possible to prove that 
U = ti(Q). These functions are only identical in special cases, for example, if the condition [u’] n v = 0 
is satisfied over the whole crack To or [Uj * v 2 0 on To, in which case the material derivative h(Q) = U 
is uniquely determined from the variational problem given above. 

According to definition (1.19) the material derivative can be interpreted as the total derivative of 
the perturbed solution with respect to the perturba.tion parameter. For comparison, t9 Bucknzr 
weighting functions derived earlier in [16, 171 are found from the partial derivative iii0 E (u” - u ). 

The problems of finding a material derivative of arbitrary order from the corresponding weighting 
functions were constructed in [18] for the linear crack problem. 

The asymptotic form of thepotential energy. For a fixed perturbation @we can determine the potential 
energy function II(@): (-Co, Es) ++ R for problem (1.7) in the form 

I-I(Q)(E) = ‘/2 (aij(&ij(u”)dn, - Jf&ti, 

where U” E KF is the solution of problem (1.7). Taking into account the inequality 

fqj(ue)Eij(uE)dQe = jf&d!2, 

we arrive at the equivalent form 

R(Q)(&) = - “/2 (1.24) 
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In particular when E = 0 we obtain the value of the potential energy for problem (1.1) 

(1.25) 

Under the conditions of Theorem 1, we apply coordinate transformation (1.15) to the integral in 
formula (1.24), which leads to the equation 

n(Q)(&) = - V* jJ(E)(fi o Q,(E))(u’ ’ WE))dQo (1.26) 

We will obtain the first derivative of the potential energy function. We take the subsequence E, from 
formula (1.19), subtract the value of (1.25) from Eq. (1.26) with E = E,, divide this relation by E, and 
take the limit as E, + 0, by virtue of the convergences of (1.18) and (1.19) and expansions (1.4) and 
(1.11). We finally obtain 

lim E,‘(lI(@)(E,) -II(@)(O)) = II’(@)(O) 
E, -+ 0 

II’(Q)(O) = - ‘/2 j(div( Vf,)up + fjci(~))dCJo 
(1.27) 

Using Lemma 1 and identity (1.23) we can get rid of the material derivative in the second formula 
of (1.27) and obtain the equivalent relation 

II’(Q)(O) = I(- div( Vfi)up + “/2 A,( V; u”, u’))dQ, (1.28) 

Since representation (1.28) does not depend on U(Q), the first derivative of the function ll(@) is uniquely 
determined and the following formula holds 

l-I(@)(E) = II(Q)(O) +&n’(@)(o) + O(E) 

Hence we have proved the following theorem. 

(1.29) 

Theorem 3. For each permissible perturbation 6, there is a first derivative II’(@)(O) of the potential 
energy function II(@) with respect to the perturbation parameter E for E = 0, and the asymptotic formula 
(1.29) holds for fairly small E. 

The following lemma is an important supplement of Theorem 3. 

Lemma 2. If two different perturbations @IF) and Q’(E) transfer the region with the cut R. into the 
same perturbed region L& for all E, then II’(@ )(0) = II’( 

In fact, the solution ~&of problem (1.7) and the energy II(@)(’ .E in representation (1.24) are determined ) 
by the perturbed region Sz, and is independent of the choice of the perturbation function @. The value 
of II(Q)(O) of formula (1.25) in general is independent of a. Hence, the unique derivative II’(Q)(O) 
in expansion (1.29) will also be independent in the sense of the choice of the perturbation function @. 

Using representation (1.13), the integral in formula (1.28) can be rewritten in the form of the functional 
&: IV1~“(Qo)N H R, which depends on the velocity field Vin the form 

L?,(V) = j(-div( Vfi)up + 1/2div( Vc,,,)E,,(u”)E,(uo) - 

-O,(uO)E,(&%x; uO))dQo 
(1.30) 

Integral representation (1.30) of the first derivative of the energy in the non-linear problem considered 
for constant coefficients of elasticity {c~kl} were derived for the first time in [19] using the inverse 
coordinate transformation Q-~(E) E IJP~~(R~)~. The variational properties of the potential energy 
functional, similar to the orthogonal&y conditions (1.23), were used, which enabled the material 
derivative of the solution to be ignored. 

Note also that, using the orthogonality conditions for the material derivative U(Q), not only the 
potential energy functional can be differentiated. For example, we will consider the functional of the 
deviation of the solution ZP of problem (1.7) from the specified continuous finite function w E C;(Q) 
with respect to the energy norm 
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The function w belongs to the whole K, for fairly small E. Substituting 2) = LL’ + w into inequality 
(1.1) and u = u’” 0 @(a,) + w into inequality (1.8) and then subtracting the relations obtained, divided 
by E,, and taking the limit as aIz + 0, we obtain the following identity (compare with conditions (1.23)) 

~y(ti(@))~ij(~)dC& = /(div(Vf,)w;-Ai(V; u’, w))dQo 

In view of the smoothness of w we have the expansion with respect to E in series 

WO@(&) = w+E(V.Vw) = O(&)BRo 

Hence, applying transformation (1.5) to F(E) and taking into account the convergences of (1.18) and 
(1.19), we can calculate the following partial limit 

lim 
E, + 0 

E,i(F(@)(zz,) - F(@)(O)) = 

= I ( fiA,(V;u”-w,uo-w)+oU(uo-w)tij(i(~)-~~Vw))d20 

But, by virtue of conditions (1.23) and the identity obtained, we can here get rid of the material 
derivative ti(@), which gives the derivative of the functional P(@) with respect to E when E = 0 in the 
form 

F’(@)(O) = j(div(Vfi)( U’ - w)i - 1/2A 1 (Vi U’ + W, U’ - W) - ~ij( U’ - w)E~~( V . VW))~QO 

Note that the rules of differentiation with respect to E of the functionals F(Q) and II(@) considered 
above in formula (1.27) formally correspond to the principle of differentiation of a moving volume (see 
[20]). But in the general case of an arbitrary functional F(@)(E) this principle cannot be used here in 
view of the non-uniqueness of the material derivative for problem (1.1). 

If the material derivative of the solution k(Q) is determined uniquely and the functions Q,fand {c& 
are fairly smooth, a second derivative of the potential energy II”(Q)(O) exists, as was shown earlier in 
[15]. In the case considered here, it can be derived by analogy with the first derivative in the form 

IT’(Q)(O) = j(- F,(Q) u”-div(Vfi)tii(@) + 1/2A2(Q; u’, u”) +A,(V; u”, li(Q)))dC20 

where F2 andA are the coefficients of a2/2 in the subsequent terms of the expansions (1.14) and (1.12) 
respectively. 

2. INVARIANT ENERGY INTEGRALS 

The general form of the invariant integral. Suppose the region D c RN with piecewise-smooth boundary 
30 is such that meas D > 0, D C_ a0 and the solution u” of problem (1.1) has H2-smoothness in the 
region D up to the boundary. According to the previous note on the smoothness of the solution, such 
a region always exists. The integral from formula (1.30) can be differentiated by parts in the region D. 
We will denote by 4 = (qi, . . . , qN) the unit vector of the outward normal to the boundary of region D. 
We then have the equivalent representation of functional (1.30) in the form of the sum L&(V) = 
I(v) + Ii + 1, + 1s of the following integrals 

I, = j&j, j(u”) + fi)( v . Vz$)dD 

I, = lfi( V ’ VUp)d( RO\D) - I( V ’ V)fjuPd(aao\ro) n (~O\D) t 

+ 5; j( v . VcijtI)Enr(Uo)Eij(uO)d(Bo\o) 

oij(uo) ‘/z divVEij(Uo) - Eij d(Q,W 
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and the integral over the closed boundary 30 

I( ‘) = jOij(uo)( fi Cv . q)Eij( U”) - qj( V VUp))d(aD) (2-l) 
HereI = 0 by virtue of the equilibrium equations (1.2). 
Our immediate aim is to represent the derivative of the energy function solely by an integral over 

the boundary (2.1). We will derive the sufficient conditions for which I2 = 1, = 0. The integrals in IZ 
vanish when V = 0 orf = 0 and EYk~ = 0. In order for the integral 1a to vanish, taking into account 
the symmetry of the tensor {cijk&, it IS sufficient to require that the following relation should be satisfied 

Cijki(X)t,i( ‘/2 divv(x)&- ci,V,,j(x)) = 0, \J(&j}, for almost all x E s;~,\D (2.2) 

Equation (2.2) is obviously satisfied for V = const. Moreover, when N = 2 the vector V = x gives 

l/2 diV V = I 3 Vm, j = 6mjv 1/2divV&j-&,,Vm,j = &-& = 0, i, j = I,2 

Also, when N = 2 the vector V = (-x2, x1) gives the antisymmetric matrix Vm,i = y,m when m + j and 
& = 0 (m,j = 1,2), substitution of which into relation (2.2) leads formally to the condition conaecting 
the coefficients of elasticity, 

Cl111 = c2222 = Cl212 = -cl1227 Cl211 = Cl222 = 0 

This condition is not satisfied even for the isotropic case. When N = 3 one cannot construct examples 
of the non-constant vector V E const, for which relation (2.2) would be satisfied. 

We will sum up these discussions in the following theorem. 

Theorem 4. Suppose, under the conditions of Theorem 3, the subregions D C Q. with fairly smooth 
boundary dD satisfy the following assumptions: (a) the solution .u’ of problem (1.1) is from the class 
H” inD, (b) in the region Q\D the conditions V = 0 orf = 0, VC~~[ = 0 are satisfied, and (c) the functions 
Vand cijkl are such that equality (2.2) holds almost everywhere in Q,\a. Then the first derivative of the 
potential energy H’(@)(O) can be represented by an invariant integral Z(V) of the form (2.1) along the 
boundaries ~30. 

In the following sections, using formula (2.1), we will construct invariant integrals for specific examples 
of perturbations of the region and the geometry of the cut. 

Perturbation ofthe whole cut. We will choose a shearing function n E W1,-(RN), which is finite in the 
region Q and TJ = 1 in a certain neighbourhood ??(r,) C RN of the whole cut. Here we assume that 
lYO C ??(I-,) C supp q C Q. Suppose the cut is plane, namely, it lies in the k: . v = a, a = const plane. 
For the chosen vector p = (JQ, . . . , pN) we consider the shift of the cut in the direction p using the 
perturbation Q(E) = I I- apn. Then the coordinate transformation (1.5) gives a perturbed cut FE which 
lies in the (y - ap) . v = a, the region @(E)(Q) = Q by virtue of the fact that n is finite, and the perturbed 
region with the cut R, = Q\rE. If Assumption 1 holds, Assumption 2 will then also be satisfied for fairly 
small E. It is also obvious that condition (1.6) in Assumption 3 is satisfied by virtue of the constant vector 
of the normal vE = v. 

We can use Theorem 4 with B = supp rl\0(lY’,$ if we additionally require that f= 0 and Vcgw 5 0 in 
the neighbourhood ?? (To) of the cut. 

In fact, the solution u” of problem (1.1) possesses additional local H2-smoothness outside the 
neighbourhood of the edge of the cut yoyo, and of course, in D, and then condition a of Theorem 4 is 
satisfied. Outside suppn we have V s 0, in the 8(lYo) of the assumption f = 0 and Vc#l 3 0, and 
consequently condition b will also be satisfied. Outside suppn the function V is equal to zero, in the 
neighbourhood G(lY,) by virtue of TJ = 1 we also have a constant velocity field Vrp, and hence equality 
(2.2) and condition c hold. 

Hence, we arrive at the invariant integral I(pn) of the form (2.1) over the boundary 30, consisting 
of the boundary of the carrier of the shearing function 30, = J(suppn) and the boundary of the 
neighbourhood &D, = XY(r,-J. But the integral over 30, is equal to zero. On the other hand, by Lemma 
2 the first derivative II’(I + apn)(O) and of course, its representation ICpy) are independent of the choice 
of the shearing function q, and of course, of 30,. Hence we obtain the integral 

(2.3) 
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over any sufficiently smooth closed (N - I)-dimensional manifold E(TO) around the whole cut I0 from 
the neighbourhood 0’(I,) C Q, where S E 0 and Vcijkl E 0, and for an arbitrary vector p. 

For the linear problem without the conditions for the crack surfaces not to overlap, requirement (1.6) 
in Assumption 3 is removed. Hence, in the linear case, the representation of the derivative of the energy 
of invariant integral (2.3) holds for an arbitrary geometry of the cut, which satisfies Assumption 1, and 
for an arbitrary direction of the shiftp. For the non-linear problem investigated here, with the conditions 
of no overlapping, relation (1.6) is only satisfied in special cases when a non-plane cut I0 and the direction 
of the shift p are chosen. 

For example, suppose the cut I0 lies on a surface which is given by the equation XN = w&t, . . . , Q_~) 
with a fairly continuous function y. Then the shift Q(E) = I + cpq in the directionp = (0, . . . , 0,~~) 
enables condition (1.6) to be satisfied and gives invariant integral (2.3) for such a non-plane cut. 

?emrbation of the edge of the cut. Suppose a plane cut Ia with edge ‘y. (a closed curve when N = 3 
or two points when N = 2), lies in the plane x * v = a. We wil1 assume that a certain neighbourhood of 
the edge of the cut Q1 (yO) C RN exists, in whichf 5 0 and Vcgkl = 0. Here we assume that the boundary 
of this neighbourhood intersects the cut, which distinguishes this construction from that given in the 
previous section. We will choose a shearing function x E W1,“(RN) with x = 1 in 6,(y0) and x = 0 outside 
B,(ya), where y0 C 0 ,(~a) C S,(y,) C Q and the boundary O$ytr) also intersects the cut. For the tangential 
vector to the cut z = (rt, . . . ) TV), i.e. r . v = 0, the use of the perturbation by a shift Q(E) = I + ZYC~ 
converts To into the cut I, in the same planey . v = a with the perturbed edge yc 

In the light of the assumptions made, we can use Theorem 4 with D = (!?&(ya)\Q r(ya), using the same 
discussions as in the previous section. The boundary a0 will consist of three parts 

Part of the integral l(zx) from formula (2.1) over a& is here equal to zero by virtue of the identity 
$/z 0. By Lemma 2 we have that I(rx) is independent of the choice of the shearing function x, and of 
course, of a&. On the other hand, the integrand in I TX) over the boundary aD2 is bounded in view 
of the additional local smoothness of the solution u 6 . Hence, we can take the limit in Z(+cx) when 
meas@&) -+ 0. As a result, only the integral by parts of the boundary aD3 remains, which again, by 
virtue of Lemma 2, is independent of the choice of 6,(y0). 

Hence, we have an invariant integral of the energy for a perturbation by a shift along the plane cut 
in the form 

0 

qj(uO) ( i(T q)Eu(uO) - qjas > Wy,) (2.4) 

over an arbitrary closed fairly smooth (N - I)-dimensional manifold 5(y0) around the edge of the cut 
y. in the neighbourhood B1(yO) when f = 0 and Vc+ = 0, and in an arbitrary tangential direction z to 
the cut. For example, Z(‘yo) can be taken in the form of a torus around the edge of the cut in R3. 

Note that the choice of p = z in the previous section for a shift of the whole cut leads to the same 
region as for a shift of the edge of the cut. Hence, it follows from Lemma 2, that 1(q) = 1(%x) in formulae 
(2.3) and (2.4) respectively. 

Suppose the edge y. of a plane cut in a three-dimensional region includes a rectilinear section L. As 
was shown in [14] for a rectangle, in this case one can obtain an invariant integral of the form (2.4) 
over a closed surface around only the part yo\L of the edge of the cut for a perturbation by a shift along 
L. In this case it is necessary to use relations which hold on the cut, and the additional local smoothness 
of the solution along L. 

Invariant integrals of the type (2.3) and (2.4) were considered in [21] for the linear problem of a crack. 

Perturbation of the cut tip. Consider the case N = 2 of a rectilinear cut To. Suppose t = (rt, Q) is the 
unit direction vector and C1 = (Brl, Br2) and C2 = (Azr,Az2) are the two tips of the cut. In other words, 
the cut l7, lies on a straight line passing through the origin of coordinates. We will choose the shearing 
functions x1, x2 E W1,-(R2) in the neighbourhood of the cut tips Ct and C2 respectively. We will assume 
that they are finite, have non-intersecting carriers meas$uppx’ n suppx2) = 0, and x1 z 1 in the 
neighbourhood S(Ct) and x2 = 1 in the neighbourhood 6(C ). Discussions, given in the previous section, 
in this case yield the invariant integral 1(%(x1 + x2)) and formulae (2.4) in the form of the sum of the 
two integrals over the non-intersecting closed fairly smooth curves Z(C ) and S(C2) around the tips Ct 
and C2 respectively. On the other hand, using Lemma 2, we can show that these integrals are mutually 
independent. 



Invariant energy integrals for the non-linear crack problem 109 

Finally, we will obtain an invariant integral for each tip of the cut. Consider one tip, which does not 
coincide with (0, 0), and suppose this is C’. By formula (2.4), we have the representation of the 
corresponding invariant integral in the form 

for fz 0 and Vcqkl = 0 in the neighbourhood O(C1). 
Formula (2.5) is well known in fracture mechanics for the linear crack problem as a Cherepanov-Rice 

path independent integral. In the classical case, the function u” E gt(Q,) in (2.5) is the solution of the 
linear problem (compare with (1.1)) 

I Oij(UO)Eij( u)dQo = Jfiz,,&,, vu E fil (Q,) 

In the non-linear case, the same expression of integral (2.5) is obtained for the solution u0 E K0 of non- 
linear problem (1.1). 

On the other hand, formula (2.5) is not the only possible representation of the first derivative of the 
energy. We will use the perturbation by a local extension CD(x) = I + E&x~. This gives the same 
perturbed rectilinear cut IYE with tips Ci = ((B + c)ri, (J? + E)Q) and Cz = C2 as the local shear 
I + E~x’, considered above. For extension, the velocity field v = z&ix1 in the neighbourhood of the 
cut tip S(C’), where x1 = 1, has the form ~zxXB-I. Therefore condition (2.2) is satisfied. Hence, with 
the assumptions made, when the representation of the energy derivative of II’(1+ a~xr)(O) by an integral 
over the contour (2.5) holds, the representation II’@ + a+~~-tx~)(O) in the form of the invariant integral 

(2.6) 
will also hold. 

By virtue of Lemma 2 the following equality is satisfied 

IT(Z + E&(O) = II’(Z + ExB--‘X’)(O) 

Therefore the invariant integrals (2.5) and (2.6) are equal to one another, i.e. I(Tx’) = I(xK~x’). Invariant 
integrals similar to (2.6) and (2.7) were introduced previously in [22] for the linear crack problem. 

Note also that the same discussions as above lead to one other invariant integral in the two-dimensional 
case. That is, we apply the perturbation by an extension @(a) = I + EX?J to the whole rectilinear cut, 
which lies on the straight line x . v = 0, with shearing function IJ, which was found earlier. This gives 
an invariant integral in the form 

‘(XT) = Jo,(u')(i(n. ~)~ij(u”)-_j(x. VUp))&(I?o) (2.7) 

along an arbitrary fairly continuous closed curve Z(Io) around the cut IO in the neighbourhood O(Ia), 
where f = 0 and VcqLI 3 0. 

3. CONCLUSION 

The asymptotic representation (1.19) of the solution of the perturbed problem with respect to a small 
perturbation parameter with a weak material derivative of the solution holds for the non-linear crack 
problem with conditions for the crack surfaces not to overlap, when condition (1.6) imposed on the 
crack geometry and the general form of the perturbation of .the region, is satisfied. 

Using the material derivative method, asymptotic expansion (1.29) of the potential energy fnnction 
with respect to the perturbation parameter (the analogue of the Griffith formula) has been obtained. 
Here the first derivative of the energy is independent of the material derivative of the solution while 
a second derivative exists if the material derivative is unique. The complete asymptotic expansion of 
arbitrary order of both the perturbed solution and the energy function holds in the linear crack problem. 

The first derivative of the energy function allows of a general representation in the form of an invariant 
integral over a closed contour (2.1), if the sufficient condition (2.2), imposed on the perturbation function 
and the coefficients of elasticity is satisfied. The invariant integral in expression (2.1) is determined by 
the velocity field of the chosen perturbation. Representation (2.1) with condition (2.2), holds both for 
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the non-linear and for the linear crack problem. The next invariant integrals in the two-dimensional 
and three-dimensional cases are constructed: over an arbitrary smooth contour around the whole of 
the cut in the form of formula (2.3) for the perturbation by a shift of a plane cut in an arbitrary direction 
and a non-plane cut in a direction which satisfies condition (1.6), in the form of formula (2.7) for the 
extension of a rectilinear cut; over the contour around the edge of a plane cut in the form of formula 
(2.4) for the perturbation by a shift along the cut; along a contour around the tip of a rectilinear cut 
in the form of formula (2.5) for the perturbation by a local shift along the cut and in the form of an 
equivalent formula (2.6) for the perturbation by a local extension. 

The formula for the invariant energy integrals obtained for the non-linear crack problem with possible 
contact between the crack surfaces can be used in problems of the quasi-static growth of a crack and 
to optimize its shape and position in the body. 

I wish to dedicate this paper to the 50th year of Professor A. N. Khludnev and to thank him for 
consultations and for his help with the research on this topic. 
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